ℤ2-graded codimensions of unital algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

Varieties of Unital `-Groups and ΨMV-Algebras

(Day 1): References (for general background) →Varieties of lattice-ordered groups, N. R. Reilly, in Lattice-Ordered Groups, Advances and Techniques, A. M. W. Glass and W. C. Holland (eds.), Kluwer Academic Publishers, 1989. Lattice-Ordered Groups, an Introduction, M. Anderson and T. Feil, D. Reidel Pub. Co., 1988. Theory of Lattice-Ordered Groups, M. Darnel, Marcel Dekker, 1995. Partially Order...

متن کامل

Z2-Graded Cocycles in Higher Dimensions

Current superalgebras and corresponding Schwinger terms in 1 and 3 space dimensions are studied. This is done by generalizing the quantization of chiral fermions in an external Yang-Mills potential to the case of a Z2-graded potential coupled to bosons and fermions.

متن کامل

Jordan ∗−homomorphisms between unital C∗−algebras

Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...

متن کامل

Property (T) for non-unital C ∗-algebras ∗

Inspired by the recent work of Bekka, we study two reasonable analogues of property (T ) for not necessarily unital C∗-algebras. The stronger one of the two is called “property (T )” and the weaker one is called “property (Te)”. It is shown that all non-unital C*-algebras do not have property (T ) (neither do their unitalizations). Moreover, all non-unital σ-unital C*-algebras do not have prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2018

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s0218196718500224